Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Laminar Burning Velocities of Nitrogen Diluted Standard Gasoline-Air Mixture

2008-04-14
2008-01-1075
To understand how laminar burning velocities of standard unleaded gasoline-air-mixtures change by varying the concentration of oxygen in the combustible mixture, experimentally and numerical investigations are conducted in this work. Experiments were performed using a heatable pressure vessel which enables optical access. A monochromatic high-speed Schlieren cinematography measurement system combined with a high-speed CCD camera were used to track the propagating spherical flame fronts in the vessel. Numerically, freely propagating one dimensional laminar steady flame calculations were conducted for Primary-Reference-Fuel Air Mixtures (PRF87 or RON87), corresponding for standard gasoline combustible mixtures. Two combustible mixtures were investigated: (1) with air as oxidizer; (2) oxidizer consisting of 15% O2 and 85% N2 by mole fractions. The initial temperature for all investigated mixtures was 373 K.
Technical Paper

Laminar Spherical Flame Kernel Investigation of Very Rich Premixed Hydrocarbon-Air-Mixtures in a Closed Vessel under Microgravity Conditions

2008-04-14
2008-01-0471
In this work very rich premixed laminar spherical flame kernels of hydrocarbon-air combustible mixtures were experimentally and numerically investigated under microgravity conditions. These microgravity combustion experiments were carried out in the Drop Tower of Bremen University. The Closed-Vessel-Bomb-Method (CVBM) was applied for all experimental investigations combined with a monochromatic Helium-Neon-Schlieren Measurement Technique. Images of the propagating spherical flames were tracked with a High-Speed-Camera. The pressure vessel enables optical access and contains a volume of approx. half a litre. Combustible Mixtures were investigated at initial pressures up to 30 bar and initial temperatures were 420 K for all experiments, whereas the equivalence ratio for investigated N-Pentane-Air-Mixtures was Φ=3.0, N-Hexane-Air-Mixtures was Φ=3.3, N-Heptane-Air-Mixtures was Φ=3.5 and the equivalence ratio for investigated Isooctane-Air-Mixtures was Φ=3.9 for all experiments.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Technical Paper

DI Diesel Engine Combustion Modeling Based on ECFM-3Z Model

2007-10-29
2007-01-4138
In recent years, with the development of CFD technology, numerical simulation is becoming an important method to study the in-cylinder spray and combustion process of internal combustion engine. Consequently the appropriate selection of mathematical models is very important, which will determine directly the accuracy of calculation results in IC engine numerical simulation. In this paper, the EDC and ECFM-3Z combustion model was introduced respectively, and the latter was emphasized on. Finally it was decided to use ECFM-3Z model to simulate the combustion process of a 4-valve DI diesel engine for its advantages. Through comparison and analysis, it is found that the computation results of the in-cylinder pressure peak, RoHR and emission products have excellent agreement with experimental data. Accordingly the research results show that the ECFM-3Z model reveals the DI diesel combustion process closely, and forecasts the formation of exhaust emissions accurately.
Technical Paper

Numerical Simulation and Experimental Study of Mixture Formation and Combustion Process in a DI Diesel Engine

2007-08-05
2007-01-3555
In the present study, an improved multi-dimensional CFD code has been used to simulate the mixture formation and combustion process of a DI diesel engine. WAVE breakup model constants C0 and C1 are modified according to a linear expression, which is a function relation to the gas pressure in-cylinder. Reasonable agreements of the measured and simulated data of in-cylinder pressure, mean temperature, NOx and soot emissions were achieved for different engine operation conditions. At the same time, the effects of different spray angles on the diesel engine mixture formation and combustion have been further simulated based on the improved multi-dimensional fuel spray and combustion models. The influence of different testing conditions mentioned above on the PM and gaseous pollutant was also discussed in this paper. Predicted trends of soot and NOx formation are also presented together with the corresponding measured data.
Technical Paper

Balancing of Engine Oil Components in a DI Diesel Engine with Exhaust Gas Aftertreatment

2007-07-23
2007-01-1923
The influence of oil related emissions became more important in the past due to reduced engine-out emissions of combustion engines. Additionally the efficiency of exhaust gas after treatment components is influenced by oil derived components. A balancing of relevant engine oil components (Ca, Mg, Zn, P, S, Mo, B, Fe, Al, Cu) is presented in this paper. The oil components deposited in the combustion chamber, in the exhaust system as well as in the aftertreatment devices were determined and quantified. Therefore a completely cleaned DI Diesel engine with oxidation catalyst, Diesel particulate filter (DPF) and NOx adsorber catalyst (LNT) was operated in different operating conditions for 500 h in a development test cell. The operation included lean/rich cycling for NOx trap regeneration. After finishing the 500 h test procedure the engine was completely disassembled and all deposits were analyzed.
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

2007-04-16
2007-01-0167
Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Combined Simulations and OH-Chemiluminescence Measurements of the Combustion Process using Different Fuels under Diesel-Engine like Conditions

2007-01-23
2007-01-0020
The influence of different fuels and injection pressures on the flame lift-off length (LOL), as well as the combustion structure under quiescent conditions in a heated high-pressure vessel were experimentally investigated using OH chemiluminescence measurements. This data was used to validate the newly developed G-equation coupled with MRIF (G-MRIF) model, which was designed to describe the lifted Diesel combustion process. The achieved results are very promising and could be used as a tool to apply this combustion mode into Diesel engines. Furthermore these measurements were used to validate the approach of a new combustion model, which was developed using former OH chemiluminescence measurements by the authors. Based on this approach the LOL is mainly determined by auto-ignition and therefore highly dependent on the cetane number. This model is presented in more detail within this work.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

On the Potential of Low Heat Rejection DI Diesel Engines to Reduce Tail-Pipe Emissions

2005-04-11
2005-01-0920
Heat transfer to the combustion chamber walls constitutes a significant portion of the overall energy losses over the working cycle of a direct injection (DI) diesel engine. In the last few decades, numerous research efforts have been devoted to investigating the prospects of boosting efficiency by insulating the combustion chamber. Relatively few studies have focused on the prospects of reducing emissions by applying combustion chamber insulation. A main purpose of this study is to assess the potential of reducing in-cylinder soot as well as boosting aftertreatment performance by means of partially insulating the combustion chamber. Based on the findings from a conceptual study, a Low Heat Rejection (LHR) design, featuring a Nimonic 80A insert into an Aluminum piston, was developed and tested experimentally at various loads in a single-cylinder Hatz-engine.
Technical Paper

System Comparison of Hybrid and Fuel Cell Systems to Internal Combustion Engines

2002-10-21
2002-21-0070
Increasing shortages of energy resources as well as emission legislation development is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Alternatives such as fuel cell systems or hybrid propulsion are in discussion or have already been introduced. This paper gives a survey on the present technical status of internal combustion engines, hybrid concepts and current fuel cell vehicles. Different solutions will be presented, so that an evaluation of advantages and drawbacks can be given. The further potentials of each concept, as well as combinations of different systems are discussed, and an outlook into the future is given.
Technical Paper

Modeling of HCCI Combustion Using Adaptive Chemical Kinetics

2002-03-04
2002-01-0426
In this paper an online method for automatically reducing complex chemical mechanisms for simulations of combustion phenomena has been developed. The method is based on the Quasi Steady State Assumption (QSSA). In contrast to previous reduction schemes where chemical species are selected only when they are in steady state throughout the whole process, the present method allows for species to be selected at each operating point separately generating an adaptive chemical kinetics. The method is used for calculations of a natural gas fueled engine operating under Homogenous Charge Compression Ignition (HCCI) conditions. We discuss criteria for selecting steady state species and the influence of these criteria on the results such as concentration profiles and temperature.
Technical Paper

Simulating the Combustion in a DI Diesel Engine Applying a New Model for the Conditional Scalar Dissipation Rate

2001-03-05
2001-01-1001
The Representative Interactive Flamelet (RIF)-model offers a method of separating the numerical effort associated with solving the governing equations for the turbulent flow field from that of the chemistry. This is possible since the chemical time scales can be considered very small compared to those related to the turbulence. The concept has gained widespread recognition owing to its ability of capturing the essential physics underlying combustion. The objective of this paper is to show how a more accurate description of mainly the soot formation and oxidation processes in a high-speed small-bore Direct Injection (DI) diesel engine can be realized within the framework of the RIF-model. This is achieved by deriving a new model for the conditional scalar dissipation rate, describing the transport in the flamelet.
Technical Paper

Cold Start Emission Reduction by Barrier Discharge

2000-10-16
2000-01-2891
Dielectric barrier discharge (DBD) offers the advantage to excite and dissociate molecules in the exhaust gas stream. Those dissociated and excited species are oxidizing or reducing harmful exhaust gas components. The advantage of a plasma chemical system in comparison to a catalytic measure for exhaust gas treatment is the instantaneous activity at ambient temperature from the starting of the engine. The investigations reviewed in this paper are dealing with the plasma chemical oxidation of hydrocarbons in the exhaust gas stream during cold start conditions. The article concerns the design and development of a plasma-system in order to decrease the hydrocarbon emissions from engine start till catalyst light off. Vehicle results in the New European Driving Cycle show a hydrocarbon conversion of more than 42% in the first 11 seconds from engine start. In this period nearly all types of hydrocarbon were reduced.
Technical Paper

Analysis of the Particle Size Distribution in the Cylinder of a Common Rail DI Diesel Engine During Combustion and Expansion

2000-06-19
2000-01-1999
In the recent years diesel engine developers and manufacturers achieved a great progress in reducing the most important diesel engine pollutants, NOX and particulates. But nevertheless big efforts in diesel engine development are necessary to meet with the more stringent future emission regulations. To improve the knowledge about particle formation and emission an insight in the cylinder is necessary. By using the fast gas sampling technique samples from the cylinder were taken as a function of crank angle and analyzed regarding the soot particle size distribution and the particle mass. The particle size distribution was measured by a conventional SMPS. Under steady state conditions the influence of aromatic and oxygen content in the fuel on in-cylinder particle size distribution and particle mass inside a modern 4V-CR-DI-diesel-engine were determined. After injection and ignition, mainly small soot particles were formed which grow and in the later combustion phase coagulate.
Technical Paper

The Potential of Small DI-Diesel Engines with 250 cm3/Cylinder for Passenger Car Drive Trains

1997-02-24
970838
The demand for fuel-efficient, low-displacement engines for future passenger car applications led to investigations with small DI diesel engines in the advanced engineering department at Mercedes-Benz. Single-cylinder tests were carried out to compare a 2-valve concept with 241 cm3 displacement with a 422 cm3 4-valve design, both operated with a common rail injection system. Mean effective pressures at full load were about 10 % lower with the smaller displacement. With such engines a specific power of 40 kW/I and a specific torque of about 140 Nm/I should be possible. In the current stage of optimization, penalties in fuel economy could be reduced down to values below 3 %. The “4-cylinder DI diesel engine with 1 liter displacement” is an interesting alternative to small 3 cylinder concepts with higher displacement per cylinder. An introduction into series production will not only depend on the potential for further improvement in fuel economy of such small cylinder units.
X